Slip-enhanced electrokinetic energy conversion in nanofluidic channels.
نویسندگان
چکیده
We investigate theoretically the influence of hydrodynamic slip at the surface of a nanofluidic channel on the efficiency with which electrokinetic phenomena can be used to convert hydrostatic energy to electrical power. Slip is introduced by applying the Navier boundary condition to the pressure-driven and the electro-osmotic components of the fluid velocity. A strong enhancement in the efficiency is predicted for increasing slip length due to the resulting decrease in the fluidic impedance and increase in the streaming conductance. These effects are moderated by a decrease in the electrical impedance, which promotes dissipation. The maximum efficiency approaches 100% as the slip length diverges, and a potentially practical 40% efficiency is expected for a moderate 30 nm slip length in a 10 nm high channel. Recently reported slip lengths for carbon nanotube filters suggest that efficiencies above 70% and high power densities might be achieved in a graphitic system.
منابع مشابه
Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices
We devise a new approach for capturing complex interfacial interactions over reduced length scales, towards predicting electrokinetic energy conversion efficiencies of nanofluidic devices. By embedding several aspects of intermolecular interactions in continuum based formalism, we show that our simple theory becomes capable of representing complex interconnections between electro-mechanics and ...
متن کاملElectrokinetic energy conversion efficiency in nanofluidic channels.
We theoretically evaluate the prospect of using electrokinetic phenomena to convert hydrostatic energy to electrical power. An expression is derived for the energy conversion efficiency of a two-terminal fluidic device in terms of its linear electrokinetic response properties. For a slitlike nanochannel of constant surface charge density, we predict that the maximum energy conversion efficiency...
متن کاملTransverse flow in thin superhydrophobic channels.
We provide some general theoretical results to guide the optimization of transverse hydrodynamic phenomena in superhydrophobic channels. Our focus is on the canonical micro- and nanofluidic geometry of a parallel-plate channel with an arbitrary two-component (low-slip and high-slip) coarse texture, varying on scales larger than the channel thickness. By analyzing rigorous bounds on the permeabi...
متن کاملEnergy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance
With asymptotic and numerical analyses, we systematically study the influence of slip length and access Ohmic resistance (due to pore-end field focusing and concentration polarization) on the energy conversion efficiency of pressure-driven electrolyte flow through a charged nanopore. Hydrodynamic slip reduces the percent of energy dissipated by viscous dissipation but, through electro-osmotic c...
متن کاملFast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors.
Electrolyte transport through an array of 20 nm wide, 20 microm long SiO(2) nanofluidic transistors is described. At sufficiently low ionic strength, the Debye screening length exceeds the channel width, and ion transport is limited by the negatively charged channel surfaces. At source-drain biases >5 V, the current exhibits a sharp, nonlinear increase, with a 20-50-fold conductance enhancement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 19 19 شماره
صفحات -
تاریخ انتشار 2008